
Augmenting Robot Teleoperation with Shared Autonomy via Model
Predictive Control

Rolif Lima∗, Somdeb Saha, Vismay Vakharia, Vighnesh Vatsal and Kaushik Das

Abstract— Shared autonomy enabled teleoperation systems
minimise the cognitive load on an operator by providing
autonomous assistance during task execution. In contrast to
prior approaches using policy blending methods that employ
a predict-then-act principle where the robot takes over when
confidence in a goal is high, our proposed approach involves
continuous policy adaptation. This approach utilises the aug-
mented state of the robot, incorporating both the operator’s
inputs as well as the robot’s autonomous assistance, to provide
final assistive control to the robot. To address the issue of the
operator’s trust in the robot, we formulate the approach as
an optimal control problem with the objective of following
the operator’s input commands while simultaneously adapting
the user’s inputs to complete the task. We employ a Model
Predictive Control (MPC) framework to solve this problem. We
evaluated this framework through a user study on multiple goal
picking tasks and compared it against pure teleoperation and
proximity-based assistance methods. The results of the study
show superior performance of our approach over the other
methods in terms of trial completion times, collision avoidance,
perceived ease of use, and responsive behaviour, indicating
its effectiveness in improving teleoperation performance while
maintaining user trust in the system.

I. INTRODUCTION

Teleoperation systems have been leveraged for their ability
to provide safe access to remote environments and have
found use in applications such as surgical robots, hazardous
waste handling, deep ocean, and space exploration [1], [2],
[3], [4]. Such systems usually consist of a remotely located
robot controlled by a human operator using a locally situated
control system connected over a communication network.
The local control system allows the user to provide inputs
to the remote robot via different modalities such as a
customized master system, joystick, virtual reality (VR) con-
trollers etc., while also providing feedback from the remote
environment to the user through modalities such as audio,
video, and force feedback as shown in Fig. 1. Most of the
research in the initial stages primarily focused on maintaining
the stability of the complete system. Prominent methods for
the same include wave variable techniques [5], passivity and
scattering [6], adaptive controllers [7], [8], model mediated
approach [9], [10], [11], and delay compensation observers
[12], [13].

However, it has been noted that the techniques that fo-
cus solely on maintaining stability do so by adding more
damping into the system. This affects both, the synchro-
nization between the local and remote systems, as well
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Fig. 1: Operator teleoperating a robot using a VR controller
while simultaneously receiving visual feedback through a
head-mounted display.

as the feedback provided to the operator (transparency).
While such systems are designed to provide the user with
an experience of being present in a remote environment
(tele-presence), they also introduce certain limitations due
to the nature of the modalities involved. Although methods
like Predictive Display [14] have been proposed to address
these problems, the use of most teleoperation systems are
limited to trained operators. This limitation arises due to
factors such as lack of an appropriate user interface to
access all the degrees of freedom (DoF) of the robot, and
a constrained perception of the remote environment. These
limitations motivated research along the direction of Shared
Autonomy as proposed in [15], [16].

A. Related Work

Shared Autonomy (SA), synonymously known as Assis-
tive Control, or Shared Control [17], generally employs a
team consisting of a human operator and an autonomous
robot, collaborating in the pursuit of a common task. Shared
Autonomy can broadly be divided into two categories,
namely policy blending approach [18], [17] and policy
adaptation approach [19], [20]. The policy blending approach
comprises two major steps: an inference phase that predicts
confidence in the operator’s intent, followed by an arbitration
phase wherein the operator’s input is blended in a weighted
manner with the autonomous input.

Most of the policy blending works in the literature rely
on Bayesian inference to predict the operator’s intent. [21]



Fig. 2: Shared autonomy with policy adaptation

uses a recursive Bayesian formulation to predict user’s
goal based on a flexible number of inputs from the user.
Javdani et al. [22] formulated the problem as a POMDP
with uncertainty over user goals and solved the same using
hindsight optimization to obtain approximate solutions. [23]
combined natural gaze along with POMDP to predict the
goals even when the user’s motion is not goal-directed. Other
works have aimed to predict a user’s goal based on motion
prediction models such as in [24]. Works like [18], [25]
use Inverse Reinforcement Learning (IRL) to learn the cost
function associated with a goal-directed motion which is
later used as a reference cost to predict the user’s goal. [26]
uses Dynamics Movement Primitives (DMP) to learn task-
specific human motions and further uses the same to predict
the user’s intended goal by comparing their inputs with that
of the inputs from DMP.

Despite being demonstrated in various applications, policy
blending approaches suffer from various limitations as they
rely heavily on goal prediction methods. Due to the predict-
then-act nature of these methods, there is an almost complete
transfer of control from the operator to the robot once the
confidence in the predicted goal surpasses a certain threshold.
Such techniques have led to reduced human trust in robots
[27]. Additionally, the final policy obtained by blending may
perform differently from either individual policies, leading
to possible instability. The blended policy can also lead to a
catastrophic failure if the intent prediction algorithm fails to
predict the correct intent and transfers control to the robot.

These disadvantages are solved elegantly by the always-
active nature of policy adaptation techniques (Fig. 2), making
them a favourable choice for teleoperation systems. Instead
of identifying the operator’s intent first, these approaches
modify the operator’s inputs directly by incorporating the
user and environment states.

Prior works in policy adaptation have most commonly
used a reinforcement learning (RL)-based approach with a
composite reward function comprising of one component
to stabilize the system and another to achieve the task-
specific goal based on the user’s feedback [19], or a mea-
sure of empowerment [20]. [28] proposed an RL approach
using DDQN to learn a policy with a reward function that
minimises the robot’s intervention in the collaborative task
while maximising the operator’s performance. [29] proposed
a residual-policy learning approach where assistance to the
user is provided as a corrective action to the user’s input.
[30] proposed to train an RL policy in a hierarchical fash-
ion utilizing the offline phase to pre-train an autonomous

policy followed by an online phase incorporating the user’s
feedback.

Despite the success of these techniques in assisting a user
to complete a task, their applications remain limited due to
their reliance on a precise dynamic model of the environment
for pre-training the policy offline. Furthermore, the results
are predominantly showcased in simulated environments
that typically involve single-goal tasks with discrete action
spaces, without considering scalability to tasks with multi-
ple goals and continuous action spaces. RL algorithms are
also not data-efficient and face challenges of trust when
transferred from simulations to real-world scenarios. This
paper attempts to address these gaps by proposing a Model
Predictive Control-based Shared Autonomy framework. We
propose that the optimal control-based policy adaptation
will be effective in an environment with continuous action
spaces, enabling an operator to reach multiple goals while
maintaining a healthy balance of human-robot trust.

B. Contributions and Overview

There are two main contributions of our work– firstly, we
formulate Shared Autonomy as an optimal control problem
by introducing a novel cost function along with appropriate
constraints that will provide a continuous policy that can
cater to multiple goals, while also providing a more satisfy-
ing user experience. Simultaneously, the cost function also
ensures a smooth switching between user-assisted motion
and autonomous robot motion.

Secondly, we conduct a user study where we com-
pare our proposed method against two baselines, namely
Proximity-based Shared Autonomy [21] and Pure Teleopera-
tion. Through objective and subjective metrics obtained from
the study, we found that our MPC-based method performed
better than baselines in terms of trial times and collision
avoidance, and was rated higher by users in terms of usability
and responsiveness.

The rest of the paper is structured as follows: Section II
lays out the problem statement in detail. Section III describes
the optimal control formulation and solution methodology
for the shared autonomy problem. Section IV describes the
experimental study including all the relevant details and the
procedures that were followed. The results from the study
in terms of objective and subjective metrics are presented
in Section V. Finally, in Section VI, we summarise our key
findings and their implications, and describe the limitations
and future research directions.

II. PROBLEM DESCRIPTION

In this work, we consider the problem of robot teleop-
eration via policy adaptation-based shared autonomy. The
objective of the current work is to perform picking tasks
at various locations using a 6-DoF manipulator arm. The
operator is tasked with picking three cubes in succession,
each located at distinct positions on a table. This particular
task was selected due to its simplicity, and the relative ease
a novice might feel while using the teleoperation system.



Fig. 3: Hardware Setup: Left shows an operator wearing
HMD (1) along with hand held controller(2); Right shows
stereo camera (3), goals (4), robot arm (5) and drop box (6).

Fig. 3 shows the configuration of the hardware setup
employed in our work. We used an HTC Vive virtual
reality (VR) headset, along with its handheld controllers, to
translate operator motions into commands for controlling the
robot. The robot is a 6-DoF Universal Robots UR-5e series
manipulator arm. The popular open-source framework Robot
Operating System (ROS) is used as middleware on top of
Linux to execute, integrate, and monitor the systems.

The operator’s inputs are captured using Virtual Reality
(VR) Controllers, and stereoscopic visual feedback is pro-
vided through the Head Mounted Display (HMD). With
a limited perception of the environment available, it is
required to develop an optimal control methodology to assist
the operator in completing the teleoperation task smoothly
while avoiding collisions with the environment. Our method
optimizes the control policies that govern the interaction
between the user and the system, resulting in enhanced
performance and effectiveness in teleoperation tasks.

III. OPTIMAL CONTROL FORMULATION

The optimal control problem for achieving operator track-
ing and goal reaching is formulated as follows.

A. Cost function

In order to ensure that the motion of the robot is synchro-
nized with that of the operator, we utilize a reference tracking
cost. Additionally, we also use a goal-tracking cost when the
robot approaches a certain goal location. The transition from
operator motion tracking to goal tracking is regulated using a
scalar weight computed from the user’s predicted trajectory.
The complete cost function is given as

min
x,u

J(x,u;g) =∑
i
(wmin||(x(i)−xd(i))||Q

+ ||(u(i)−ud(i))||R
+∑

j
(1−w( j))||gRb(x(i)−g)||P)

(1)

where, i is the ith state and control element in the trajectory. x
is the robot’s position and u is its control effort. The first part
of the cost function is the operator or the reference tracking

part which ensures that the motion (states as well as control)
of the robot is synchronized with that of the operator. Q, R
and P are the diagonal positive definite weighing matrices.
The notation ||(.)||(∗) is used to represent the quadratic form,
i.e., ||(x − xd)||Q corresponds to (x − xd)

T Q(x − xd). The
reference trajectory xd is generated by forward propagation
of a constant velocity model wherein the filtered states for
the model are obtained using a Kalman filter.

The final part of the cost function is goal-tracking, which
aims to assist the user in taking the robot accurately to
the goal location. This gains prominence when the robot
is approaching a goal. In order to ensure that the robot
approaches the goal only in the desired direction, we first
transform the relative position between the robot’s end-
effector and the goal from the robot base frame to the goal
frame using the rotation matrix gRb followed by scaling it
with the diagonal matrix P to minimize the error in a certain
direction more rapidly than the other.

The two costs are linked using a scalar weight w which is
designed to smoothly switch from tracking user commands
to assisting the user in reaching a goal of interest based on
user states. wmin is the minimum of all the computed weights
corresponding to different goals. This scalar weight for the
jth goal is obtained as:

w( j) =
1

1+ exp(β −α||(x−g)||)
(2)

where, α and β are tuning parameters, and g is the goal
location.

B. System model

In this work, we use a point mass model to represent
the motion model of the robot. This is because we use
a commercially available 6-DoF manipulator which comes
with a high gain inner loop controller for controlling the
robot joints [31]. This renders the system to be an identity-
like system to the outer loop optimal controller. The model
used for this work is:

ẋ = u (3)

C. Constraints

We also enforce additional constraints on the above opti-
mal control problem in terms of control bounds to restrict
the applied control within safe limits.

umin ≤ u ≤ umax (4)

The collision avoidance constraint used to prevent colli-
sion with the planar surface is as an affine constraint of the
type:

Ax ≥ b (5)

where rows of matrix A comprise the unit normal to the plane
and the elements of b correspond to the calibrated limits. For
example, to prevent the end-effector from colliding with the
table, one of the rows of the A will be chosen as [0,0,1] and
the corresponding value of b will be chosen as the height of
the table.



Similarly, to avoid collision with smaller objects, an ellip-
soidal constraint is used to restrict the motion of the robot
from entering the enclosing ellipsoid around objects in the
workspace.

(x−xre f )
T RMRT (x−xre f )> α (6)

where M is a diagonal matrix and R is the rotation matrix
defining the orientation of the ellipsoid. α is chosen empir-
ically to enclose the object in the ellipsoid

The above optimal control problem can be solved using a
direct method, employing classical nonlinear programming
(NLP) methods, or by using indirect methods, where the
system dynamics are first simulated in the forward direction
and smaller optimization problems are formulated at each
simulation step. These techniques have a computational com-
plexity of O(Nn2) as compared to O((Nn)2) of the NLP tech-
niques, where N is the horizon and n is the state dimension.
In this work, we use the Augmented Lagrangian Iterative
Linear Quadratic Regulator (AL-iLQR) for optimization of
the above optimal control problem.

D. Augmented Lagrangian Iterative Linear Quadratic Reg-
ulator (AL-iLQR)

An AL-iLQR is an indirect method of solving an optimal
control problem with equality and inequality constraints. In
this method the constrained optimization problem of the type:

min
x

l = f (x) (7)

subjected to: c(x){≤ or =}0 (8)

is solved by first converting it to an unconstrained one as

min
x

AL = f (x)+λc(x)+
1
2

c(x)T Iµ c(x) (9)

where c(x) can represent an equality or inequality constraint
in general. λ is the Lagrangian multiplier and Iµ is a diagonal
matrix with its diagonal entries restricted to zero for equality
constraints and a positive value for inequality constraints.

The modified unconstrained optimization problem is now
solved iteratively to update the control variables, Lagrange,
and penalty parameters in an alternating fashion. The control
parameters are optimized using an iLQR update with the
Lagrange and penalty parameters kept constant, followed by
their update as follows:

• Solve minx AL(x,λ ,µ), holding λ and µ constant.
• Update the Lagrange multipliers as

– λi := λi +µici(x∗) if i ∈ E
– λi := max(0,λi +µici(x∗)) if i ∈ I

• Update penalty term: µ := φ µ , φ > 1
• Check constraint convergence and if tolerance is not met

then repeat form step1
where, E and I are equality and inequality constraint sets

respectively, and φ is the penalty scaling parameter.
The first step of the above procedure is performed using

the iLQR method, where the unconstrained optimal control
problem is solved using the linear approximation of the
system dynamics and quadratic approximation of the cost

function. The incremental control law at kth iteration is
computed as:

δuk = Kkδxk +dk (10)

where, Kk and dk are the feed-back and the feed-forward
gains respectively, which are computed as

Kk = Q−1
uu Qux (11)

dk = Q−1
uu Qu (12)

where Quu is the partial double derivative of the action value
function Q(x,u) with respect to u and similarly Qux and Qu
are the partial derivatives with respect to state x and control
u accordingly. See [32] for a more detailed explanation of
iLQR. The optimal solution obtained from the solver is used
as an input to the robot and the corresponding joint angles
are computed using an inverse kinematics solution.

IV. EXPERIMENTAL STUDY

We conduct an experimental study involving human partic-
ipants who perform a teleoperation task using three different
methods. We assess the effectiveness of the methods used
in these experiments as well as user satisfaction through ob-
jective and subjective metrics of human-robot collaboration.
The three methods used were :

1) Pure Teleoperation (T): Obtained operator’s pose is
directly mapped to robot joint angles via inverse kine-
matics (IK).

2) Proximity-based Shared Autonomy (P): The robot is
guided to the goal using a proportional controller when
the operator reaches close to the goal.

3) Shared Autonomy using MPC (S): Our approach as
described in section III

We consider a goal-picking task where a human operator
must pick three cubes in succession, each located at a distinct
position on a table. Fig. 3 displays the configuration of
the hardware setup employed in our experiments and the
corresponding details are mentioned in Section II.

A. Procedure

We conducted a within-subjects study with N=7 partici-
pants, drawn from our research facility staff (7 males, mean
age < 25). To minimize the impact of unfamiliarity with the
experimental hardware, the subjects were allowed to spend a
few minutes doing trial runs. They were also verbally briefed
about the questionnaire that they had to answer after each
trial. Each trial commenced with the operator starting the
hardware shown in Fig. 3 with a button press followed by
an attempt to pick the cubes in a prescribed order. The trial
ended when the subject reached the final cube. Appropriate
data like the robot and operator trajectories, as well as
trial completion times, were collected during the trials. On
completion of each trial, subjects were prompted with survey
statements for subjective assessment before moving on to
the next trial. Fifteen trials per participant were conducted
in a random order with five trials per method (T, P, S).
However, the participants were unaware of which method
was being used to control the robot in a particular trial to



avoid any biases. The experimental procedure was compliant
with ethical principles set forth in the Belmont Report [33].

B. Performance Metrics

Three objective metrics were utilized for assessing the
performance of the system: (1) trial completion time, (2)
number of collisions while reaching the goals, and (3)
trajectory lengths. Lower values for each of these metrics
signify better performance. We expect the MPC-based shared
autonomy controller (S) to complete reaching tasks faster,
with minimal collisions, and with shorter path lengths than
the other two methods.

Subjective measures were extracted from surveys con-
ducted with the participants. The surveys consisted of 7-
point Likert items [34], where 1 represented the lowest
rating (strongly disagree) and 7 represented the highest rating
(strongly agree). Each participant was asked to rate the
following set of statements adapted from [35], [36], after
each trial:

1) I thought the system was easy to use (Q1).
2) I felt in control of the robot while using the system

(Q2).
3) The system was responsive to my commands (Q3).

We again expect the MPC-based shared autonomy controller
to be rated more highly than the other methods in terms of
ease of use, feeling of control, and responsiveness due to the
adaptive nature of its assistance.

V. RESULTS

This section presents the evaluation results from the exper-
imental study involving N=7 participants, with 15 trials per
participant (5 each for three different control methods). The
results include analyses of the quantitative and qualitative
metrics as described earlier.

In order to illustrate the three control conditions for one
particular user, we plot the robot end-effector trajectories in
Fig. 4(a), clipped to a distance of 0.15 m from the goal
locations. The clipping is performed as the initial approach
trajectory to the goals from the start position in free space is
not indicative of performance differences between the meth-
ods, which are more prominent near the goal locations due
to collision avoidance concerns. The performance differences
in the robot arm trajectories are not directly apparent from
these 3D plots.

To better capture the spread in the motions, we also
plot kernel density estimates in the X-Y plane for all 15
trials for the particular user (Fig. 4(b)). This is because
the robot is expected to have more jittery motion in the
X-Y plane between and around the goal locations. From
Fig. 4(b), we observe that the MPC-based method appears
to have a lower spread than the other two methods. These
plots, however, serve as illustrations of the procedure without
offering concrete insights into performance. In order to
better quantify the performance differences between the three
control methods, we perform statistical tests on the objective
and subjective metrics extracted from the experimental study
and summarize the results as follows.

(a) Trajectories in 3D during one trial in each condition.

(b) Kernel density maps– Pure teleoperation (T, blue), proximity-
based method(P, pink), and MPC-based method (S, green) across
all trials for the participant.

Fig. 4: The robot’s end-effector trajectory near the tabletop
goal positions for one particular user in the three different
control methods (T, P, S)– (a) 3D poses in one trial, (b)
kernel density estimates of scatter plots in the X-Y plane for
all 15 trials by the user.

A. Objective Metrics

Repeated measures ANOVA was performed for each ob-
jective metric described in Sec. IV-B for the three con-
trol methods. We find that there are significant differences
between the three control methods in terms of trial times
(F = 24.01, p < 10−5) and number of collisions (F = 7.91,
p < 0.005). While the mean trajectory length is slightly
longer for the MPC-based method (Table I), the differences
are not statistically significant (F = 2.9, p = 0.072).

Using paired t-tests for comparisons between control
methods, we find that the MPC-based method performs
significantly better than the Proximity-based method both in
terms of trial time (t(6) = 4.94, p < 0.0.005) and number of
collisions (t(6) = 3.49, p = 0.013). It is also better than pure



(a) Trial Completion Time (b) Trajectory Length (c) Number of Collisions

Fig. 5: Objective metrics from the experimental study comparing the three control methods - pure teleoperation (T), Proximity-
based (P) and MPC-based (S) shared autonomy.

Metric Condition Mean Std. Dev.

Trial time (s)
T 52.09 14.67
P 47.72 12.29
S 36.13 8.54

Trajectory length (m)
T 1.34 0.44
P 1.31 0.43
S 1.52 0.52

Number of collisions
T 0.71 0.65
P 0.94 0.89
S 0.20 0.40

TABLE I: Mean and Std. Dev. for Objective Metrics

teleoperation in terms of trial time (t(6) = 8.16, p < 0.001)
and the number of collisions (t(6) = 3.75, p = 0.009). These
metrics are plotted in Fig. 5.

Fig. 6: Subjective ratings on 7-point Likert items to the three
survey questions, split by control methods (T, P, S).

B. Subjective Metrics

In terms of subjective metrics, we find that the mean
ratings for the MPC-based method are higher than those for
the other two controllers for each item, as shown in Fig. 6.
These items correspond to usability (Q1), feeling of control
(Q2), and responsiveness (Q3). Using repeated measures
ANOVA tests on these subjective metrics, we find that the
differences between groups are statistically significant for Q1
(F = 8, p = 0.006), but not for Q2 (F = 2.29, p = 0.143)
or Q3 (F = 3.39, p = 0.068). A paired t-test showed that

participants rated the MPC-based method significantly better
than pure teleoperation in terms of usability (Q1, t(6) = 3.91,
p = 0.008).

VI. CONCLUSION

In this paper, we introduced a shared autonomy approach
that utilizes an MPC-based policy adaptation algorithm. The
assistive control for the robot is computed by minimizing
an optimal control problem that is designed to follow the
user’s inputs, thereby increasing the operator’s trust in the
robot while assisting the user in achieving their goals and
avoiding collisions with the environment. To evaluate our
proposed algorithm, we conducted a user study involving 7
participants who performed a total of 15 trials under three
different conditions: five trials using our proposed approach,
five trials using pure teleoperation, and five trials using a
proximity-based shared control method. The results of the
user study revealed that our proposed method outperformed
the other two conditions in terms of task completion time
and the number of collisions, as indicated by the objective
metrics. Additionally, the subjective metrics showed signifi-
cantly higher ratings for our proposed method compared to
the other two conditions in terms of ease of use.

The system in its current form is limited to a discrete
set of finite goals. We propose to address this limitation in
our future endeavours by using a learning-based approach
to learn a generalised weighting function and test its ap-
plications to continuous goals such as door opening, liquid
pouring etc. We also plan to incorporate our approach to a
dual arm robotic setup for bimanual and goal-coordinated
tasks.
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