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Abstract— This paper presents an assistive teleoperation
method using a combination of Augmented Reality (AR) mark-
ers and control switching between the operator and robot. This
method is designed to enhance remote manipulation tasks in re-
tail environments like convenience stores. The system integrates
a novel intention recognition algorithm for predicting goals,
augmented reality markers for visual guidance, and a variable
autonomy framework. The system is able to adapt under goal
switching, which otherwise fails for existing methods. A user
study with 7 participants compared our method against two
other teleoperation methods in terms of objective and subjective
metrics. Results showed that our method significantly reduced
collisions during task execution. The study provides insights into
the strengths and limitations of augmented reality assistance
and variable autonomy in teleoperation, laying groundwork
for future research in enhancing human-robot collaboration
for retail automation tasks.

I. INTRODUCTION

Automation is rapidly transforming service industries,
with convenience stores being ideal candidates for robotic
integration as they involve repetitive tasks. Smart pick-and-
place (PnP) robots can streamline operations, reduce labor
costs, and improve customer experiences. Significant ad-
vancements in robot manipulation, grasping, navigation, and
path planning have been documented in recent studies([1],
[2]). However, teleoperation remains a challenge.

Existing research on robot teleoperation has explored vari-
ous approaches to enhance user experience and effectiveness.
One such approach is robot learning for improved control.
Techniques like those proposed by Luo et al. [3] leverage
robot learning to provide expert guidance to novice operators,
improving efficiency for unskilled users. Another approach
involves VR-based intuitive teleoperation. The integration of
VR interfaces with robot control systems, as seen in the work
of Nakanishi et al. [4] and Gallipoli et al. [5], allows for more
natural and immersive teleoperation experiences.

Nicolis et al. [6] proposed a real-time optimization con-
troller based on FSM for visual-servoed dual-arm teleoper-
ation that ensures robust occlusion avoidance in cluttered
environments. Garcia Ricardez et al. [7] proposed a robotic
system based on compliant hardware design for retail au-
tomation tasks like restocking and straightening items on
shelves. Naceri et al. [8] introduced the Vicarios Virtual
Reality Interface for remote robotic teleoperation. Although
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it is proposed for disaster management, its interface suggests
potential applications in convenience store settings.

While these advancements offer valuable solutions, a sig-
nificant gap exists in leveraging Augmented Reality (AR) for
shared control during teleoperation. AR overlays can provide
real-time visual information about the environment and robot
state directly onto the operator’s view, bridging the gap
between VR immersion and the need for real-world context.
Additionally, a control framework that leverages both human
input and robot autonomy can address complex manipulation
tasks efficiently while ensuring safety in dynamic environ-
ments.

A. Contributions

Our contributions encompass a novel integration of sys-
tems and methods to enable assistive teleoperation for tasks.
They can be summarised as follows:

• We formulate a method for online inference of goals
based on offline demonstrations. We propose a cost
function that is able to accurately capture the opera-
tor’s intention while simultaneously adapting to a goal
switching condition as well.

• We make use of augmented reality to place markers
in a scene. This enables the operator to interact with
objects via the robot while minimising environmental
collisions.

• We provide the user with the freedom to switch au-
tonomy along with real time feedback and predictive
trajectory. This allows for faster execution of tasks
while also providing novices with a certain degree of
confidence in operating the hardware.

II. PROBLEM STATEMENT

In this study, we address the challenge of automated
item retrieval from retail shelving units, focusing on a
convenience store setting. The setup comprises a teleoperated
mobile robotic manipulator and an array of common, distinct
consumer products of different shapes and sizes, placed on
a shelf as illustrated in Figure 1. The robot is controlled by
an operator via a distributed teleoperation system, receiving
only the stereoscopic visual feedback of the robot’s environ-
ment via a Head-Mounted Display (HMD). The primary task
in the problem involves efficiently retrieving items from the
shelf in a randomized fashion while avoiding environmental
collisions or product damage via teleoperation. Additionally,
to mitigate the operator’s cognitive burden, we propose a



Fig. 1: (left) Operator wearing the Head Mounted Display
along with handheld controllers. (right)A mock retail shelf
unit along with the robot end-effector. It contains 3 distinct
grocery items and the operator is tasked with picking them
via teleoperation.

novel and efficient operator’s intent prediction algorithm,
which is further combined with the Augmented Reality (AR)
feature to provide real-time visual feedback to the operator
via HMD. The details of the methods used are provided in
the subsequent sections.

III. METHODS

Figure 2 illustrates the system architecture and interactions
between various sub-units. The operator (1), wearing an
HMD and using a joystick, controls the robot (2). A motion
capture system translates the operator’s hand movements
into robot end-effector actions via inverse kinematics (3).
The environment contains the robot and three shelf-mounted
goals represented as (4), with a fixed stereo camera con-
tinuously relaying visual feedback (5) of the robot end-
effector and goals to the operator’s HMD. An offline motion
library (6) stores preprocessed trajectories based on human
demonstrations. The Intention Recognition Module combines
this library with the current end-effector position (7) to
predict the operator’s intended goal. The Trajectory Planning
& Visualization Module then plans a path to the predicted
goal and generates AR markers. These markers are overlaid
on the environment view in the operator’s HMD (8), guiding
them towards the goal. This integrated system facilitates
efficient teleoperation by combining real-time feedback with
predictive assistance. The processes and subsystems involved
are described in the following subsections.

A. DMP

Dynamic Movement Primitive (DMP) is a popular frame-
work for direct learning from demonstration [9]. It utilizes
a system of second-order ordinary differential equations
corresponding to a spring mass damper system as given
in (1), where a forcing function f(s) is learnt to encode
the desired demonstrated trajectory. Further, the learnt DMP
models is used predict future goals in real-time. We use
the DMP model from [10] because of it’s robustness. When
dealing with d-dimensional trajectories, we get the following
vector formulation :

Fig. 2: The basic system architecture decomposed into
smaller units. The interaction between them allows for ef-
ficient teleoperation of the robot while receiving real time
goal prediction and visual assistance.

τ v̇ = K(g − x)−Dv + (g − x0)s+Kf(s) (1)
τ ẋ = v (2)

where x, v, g, x0, f(s) ∈ Rd represent the position, veloc-
ity, terminal position, initial position and forcing function
respectively. K,D ∈ Rd×d are diagonal matrices analogous
to spring and damping terms, to maintain each component
decoupled from the others. f(s) is a real valued non-linear
forcing term which can be written as a linear combination
of weighted basis functions.

f(s) =

∑N
i=0 ωiψi(s)∑N
i=0 ψi(s)

(3)

ωi are the weights learned via a regression method while
ψi(s) are conventionally Gaussian type Radial basis func-
tions. s is a re-paramtrization of time governed by the
canonical system ṡ = −αs where α ∈ R+ and s(0) = 1.

However a DMP learned from a single demonstrated
trajectory does not take into account the mismatch in starting
and ending points which arise due to difference in personnel
teleoperating the robot. So it becomes imperative that we
induce variability in demonstrations and yet somehow extract
a common behaviour. In order to achieve this, we collect a set
of demonstrations from various users for each goal involved
in the task. We then perform classical regression over the set
of collected trajectories to learn the parameters of a common
DMP which is non-probabilistic in nature [10]. This common
DMP corresponding to each goal acts as the set of of offline
DMP motions and are stored as a part of offline motion
library which is used in the Intention Recognition algorithm
as described below.

B. Intention Recognition

We formulate a novel intention recognition algorithm. It
takes in the set of offline learnt DMP motions and predicts
the goal that the user is trying to reach. The set of offline
DMP motions is represented as ydmp(g) ∀g ∈ g′, where g′

represents the set of goals. Based on this, the real time online



trajectory planner plans a path between the current position
of the robot end effector and the predicted goal. This path is
then visualised as a set of AR markers which then aids the
user in completing the task. The entire end-to-end method
is described in Algorithm 1 with its various sub-methods
described below.

Algorithm 1 Goal Prediction Algorithm

Require: Set of Offline DMP Motion : ydmp(g) ∀g ∈ g′,
Initialise empty buffer : y⃗i = [ ]

1: while tasknotcompleted do
2: y⃗i ← Current state of the robot end effector
3: Append y⃗i to buffer to get yi = [y⃗1i , y⃗

2
i , · · ·, y⃗Ki ]

4: if buffer is full then
5: for g ∈ g′ do
6: pdmp(yi|g)← 1.0 Reset Probabilities
7: Cuser(yi, ydmp(g))← Compute using (6)
8: pdmp(yi|g)← Compute using (5)
9: pdmp(g|yi)← Compute using (7)

10: end for
11: Predicted Goal is : argmaxg p

dmp(g|yi)
12: Reset buffer as : y⃗i = [ ]
13: else
14: continue
15: end if
16: end while

1) Trajectory Ratio: The DMP-encoded offline trajectory
is represented as ydmp ∈ R3×N ; where N is the number of
samples which serves as trajectory length determined by the
sampling time. Goal prediction uses two inputs: offline DMP-
learned actions and real-time user motion. Since comparison
of these two temporally misaligned motions is challenging,
we introduce ’trajectory ratio’ (tr) ∈ R+, which is a factor
of how much the current motion has elapsed compared to
the offline learned motion.

tr =
||y⃗i − y0||
||yg − y0||

(4)

where y⃗i ∈ R3 is the current user input (the robot’s
end effector position) whereas y0, yg ∈ R3 are the initial
and final(goal) position of the offline learned trajectory as
encoded by the DMP.

2) Finding appropriate offline DMP motion: Once the
trajectory ratio is known the offline learned trajectory ydmp is
scaled by it to get an appropriate comparison reference. The
determined motion is represented as y⃗dmp(g) ∈ R3 ∀g ∈ g′
and is computed as per Algorithm 2.

3) Moving Window Approach: Contrary to the approach
in [11], which uses the entire history of user inputs to
predict a goal, we focus on a snapshot of recent history. The
previous approach suffers from the issue that when goals
are changed dynamically while performing the motion, it is
unable to predict the new goal because the approach renders
the probability for the old goal to be close to 1 while the
probability for other goals becomes close to 0. The history
of probabilities in the multiplicative factor which were close

Algorithm 2 Find DMP Motion for appropriate comparison

Require: Set of Offline DMP Motion : ydmp(g) ∀g ∈ g′,
Trajectory Ratio : tr

1: for g ∈ g′ do
2: if tr < 1 then
3: uptoIndex← ⌈tr × length(ydmp(g))⌉
4: if uptoIndex = 0 then
5: y⃗dmp(g)← ydmp(g)[0, :]
6: else
7: scaledTrajectory ← ydmp(g)[0 : uptoIndex, :]
8: y⃗dmp(g)← scaledTrajectory[end, :]
9: end if

10: else
11: y⃗dmp(g)← ydmp(g)[end, :]
12: end if
13: end for
14: return y⃗dmp(g) ∀g ∈ g′

to 0 reduces the overall probability even when confidence
is high for the new goal. To address this, we propose a
’Moving Window’ that considers only the recent K samples
stored in a buffer. User cost and probabilities are computed
within this window, allowing the algorithm to make real-time
predictions. Once the buffer of K samples is filled, it resets
and continues. Since the entire system is running at a very
high frequency the goal prediction works real time while also
adapting to change in user intention.

4) User Cost and Goal Probabilities: The probability that
a given recent history of user inputs given a goal g is given
by:

pdmp(yi|g) = e−C2
user(yi,ydmp(g)) (5)

where Cuser is the user cost defined in (6). Here yi rep-
resents the collection of current user inputs in the current
window which is represented as a buffer of K samples. We
capture the history of recent user inputs in a single pass of
a window.

Cuser(yi, ydmp(g)) =

K∑
k=1

[
arccos

(
y⃗ki · y⃗kdmp(g)

∥y⃗ki ∥∥y⃗kdmp(g)∥

)

+ ||y⃗ki − y⃗kdmp(g)||

]
(6)

The user cost Cuser is computed over the entire length
of the buffer. It is a combination of the cosine similarity
between the input and the offline motion as well as the
Euclidean distance between them. Here y⃗ki and y⃗kdmp(g)
represents the current user input and the appropriate offline
DMP motion for kth instance of the buffer (moving window).

Lastly via Bayes’ rule, the probability of an object being
the goal g for a given set of goals g′ given the recent history
of user inputs captured in a buffer is given as :



pdmp(g|yi) =
pdmp(yi|g)p(g)∑
g′ pdmp(yi|g′)p(g′)

(7)

C. Trajectory Planning and Visualization

The trajectory planning process integrates two key inputs:
the goal predicted by Algorithm 1, and the current Cartesian
state of the robot’s end effector. We employ a relatively
simple Minimum Jerk trajectory model [12] to chart a path
between the current position and the predicted goal. This
trajectory, represented as a series of sequential Cartesian
waypoints, is then transmitted to the Visualization Module.
This module processes the scene captured by a stationary
camera, which encompasses the operational environment
(including the end effector and the goals on the shelf). The
module then augments this scene by overlaying AR markers
along the trajectory generated by the planning module. The
resulting visualization presents the operator with a composite
view: the static environment overlaid with AR markers that
serve as visual guides for goal attainment.

IV. EXPERIMENTAL STUDY

We conducted an experimental study with human partic-
ipants performing a teleoperation task using three distinct
methods. The study aimed to evaluate the effectiveness of
these methods and measure user satisfaction through both
objective and subjective metrics of human-robot collabora-
tion. The three methods were as follows:

1) Full Teleoperation without Markers (FTW): In this
method, the operator’s pose is directly mapped to the
robot’s joint angles using inverse kinematics (IK). No
goal prediction or assistive AR markers are used to aid
in goal reaching.

2) Full Teleoperation with Markers (FTM): This method
guides the robot to the goal using goal prediction
techniques and assistive AR markers.

3) Variable Autonomy (VA): This hybrid approach in-
cludes all the features of FTM, with the added ability
for the user to switch between pure teleoperation and
full autonomy. When full autonomy is granted, the
robot can execute the planned path and retrieve the
desired item from the shelf independently. So the
operator has markers to guide them, as well as the
ability to switch autonomy.

We conducted a within-subjects study (N=7, all male,
mean age < 25) focusing on a goal-picking task where
participants retrieved one of three distinct items from a
shelf. The experimental setup is illustrated in Fig. 1, with
details provided in previous sections. To mitigate hardware
unfamiliarity, participants were allowed brief trial runs and
were briefed on the post-trial questionnaire. Each trial began
with a button press to activate the hardware, followed by the
retrieval attempt. Trials concluded when the subject placed
the target object in a designated bin. Post-trial, we prompted
the participants with questions for subjective assessment. The
study comprised 15 randomized trials per participant, with

five trials per method (FTW, FTM, VA) and randomized item
selection.

We employed both objective and subjective metrics to
assess system performance. Objective measures included
trial completion time and number of collisions while reach-
ing goals. Lower values in these metrics indicate better
performance. Subjective measures were obtained through
participant surveys using 7-point Likert scales [13], where 1
represented ”strongly disagree” and 7 represented ”strongly
agree”. After each trial, participants rated the following
statements adapted from [14] and [15]:

1) I thought the system was easy to use (q1)
2) I felt in control of the robot while using the system

(q2)
3) The system was responsive to my commands (q3)

V. RESULTS

The effectiveness of our goal prediction algorithm is
demonstrated in Figures 4, 5, and 6. These plots represent
separate trial runs for each of the three goals using the FTM
method, with markers indicating the path from the current
end effector position to the predicted goal. As the probability
for the predicted goal converges to 1, signifying increased
confidence, the probabilities for other goals approach 0.
Concurrently, the user cost for the predicted goal stabilizes
with minimal variation, while costs for alternative goals
increase significantly. Figure 3 illustrates snapshots from
trials for each goal at various time intervals. Trajectories are
computed continuously, with AR markers placed to guide the
operator towards the goal. These markers dynamically adapt
to changes in end effector position. The number of markers
adjusts according to the remaining distance, enhancing user
experience. Figure 7 demonstrates the advantages of our goal
prediction algorithm over that presented in [11]. When the
operator dynamically switches from goal 1 to goal 2, our
method successfully adapts, predicting the new goal accu-
rately. In contrast, while the comparative method initially
predicts the original goal correctly, it fails to account for the
switch, resulting in all probabilities dropping to 0.

The objective and subjective performance metrics are
summarised in Table I. The means and standard devia-
tions of trial times for the three methods are shown in
Figure 8. The standard deviation for the three methods
are 13.78, 18.29 and 16.4 seconds respectively. Repeated
measures ANOVA was used to compare the task completion
times and number of collisions. The differences between the
three methods for trial times were not statistically significant
(F = 0.46, p > 0.5). The median number of collisions were
[1, 1, 0] for [FTM, FTW, VA] respectively. These differences
were statistically significant (F = 15.10, p < 0.001).
Tukey’s HSD test for pairwise comparison showed that VA
had significantly lower collision rates than FTM (p = 0.001)
and FTW (p = 0.001). Subjective metrics for this user study
were Likert items correspond to usability (q1), feeling of
control (q2), and responsiveness (q3). These are shown in 9.
These differences were not statistically significant (p > 0.5
for each item using repeated measures ANOVA).



Fig. 3: Snapshots show the operator’s perspective at different times using the FTM method. The shelf contains three goals
(items left to right). Dynamic AR markers overlay the feed, adapting to the robot end effector’s position relative to the
predicted goal. Each row represents teleoperation towards one of the three goals, demonstrating AR guidance throughout
task execution.

METHOD Objective Subjective
Trial Time(s) Collisions q1 q2 q3

FTW 39.33 1 5 6 5
FTM 40.59 1 6 5 5
VA 44.64 0 6 6 5

TABLE I: Comparison of Methods with Objective and Sub-
jective Measures

Fig. 4: Prob. & Cumulative User Cost for goal1

VI. CONCLUSION

This study aimed to enhance task retrieval from retail store
shelves via teleoperation, addressing a significant challenge
in remote manipulation. We developed a novel intention
recognition algorithm capable of predicting the operator’s
desired goal well in advance. To reduce cognitive strain,
we implemented adaptive AR markers that provide real-
time guidance to operators in achieving their goals. Our
goal prediction algorithm demonstrated high accuracy and
real-time responsiveness to changes in operator intentions.
We conducted a user study involving 7 participants, each

Fig. 5: Prob. & Cumulative User Cost for goal2

Fig. 6: Prob. & Cumulative User Cost for goal3

performing 15 trials under three distinct methods (FTW,
FTM and VA), as detailed in section IV. These methods were
evaluated using both objective and subjective performance
metrics. While we initially expected that Variable Autonomy
(VA) would outperform the alternatives, our findings revealed
a more nuanced picture. Variable Autonomy excelled in
reducing the number of collisions, making it particularly
well-suited for enhancing operational safety and boosting



Fig. 7: The efficacy of our algorithm compared to [11] under
goal switching condition. Left: Our algorithm updates the
goal confidence when the user switches from goal 1 to goal
2. Right: The baseline algorithm predicts correctly for goal 1
but when switched to goal 2, the confidence is not reflected.

Fig. 8: Task completion times for the three control methods
(FTM, FTW, VA).

novice users’ confidence. For other performance metrics,
the differences between methods were not statistically sig-
nificant, suggesting that the effectiveness of our proposed
approaches may be context-dependent. These results under-
score the complexity of teleoperation systems and highlight
areas for future investigation.

For future work, we aim to introduce more complex retail
shelf environments with a greater number of objects and
cluttered spaces to test the robustness of our methods. We
also plan on enhancing the Augmented Reality interface to be
more user-friendly and intuitive, with improved graphics for
better operator guidance. Additionally we plan on conducting
larger-scale studies and introducing additional metrics to un-
cover potential nuances in the effectiveness of our proposed
methods. In conclusion, while Variable Autonomy did not
universally outperform the alternative methods as initially
hypothesized, our study provides valuable insights into tele-
operation in retail environments. The superior performance in
collision reduction demonstrates a clear advantage in certain
contexts, laying a strong foundation for future research and
development in this critical area of robotics and human-
machine interaction.
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