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Abstract— Teleoperated robots have enabled humans to ma-
nipulate objects in remote environments without requiring
physical presence. In this paper we focus on teleoperation of
a robotic arm with shared control between the robot and the
operator. A model-mediated approach is used to compensate
for delays in the communication channel. Position information
of the operator’s arm is captured and processed to compute
the states of a motion prediction model before transmission
over a network to be used on the robot’s side, allowing for
compensation of transmission delays. Model Predictive Control
(MPC) and a novel goal prediction algorithm is used to follow
the operator’s intended motion while reducing the cognitive
loads arising from collision avoidance and fine manipulation
in the remote environment. We evaluate the proposed method
against a baseline pure teleoperation condition with an inverse
kinematic controller and observe that the proposed approach
improves the overall teleoperation performance in terms of task
completion time.

I. INTRODUCTION

Tele-robotics is a popular and continuously evolving
paradigm in the robotics community. Even though machine
learning applications have enabled robots with autonomous
capabilities [1], [2], [3], teleoperation allows humans to apply
their reasoning, creativity, and intuition to perform tasks that
are difficult for autonomous agents. These systems are best
suited for critical tasks where autonomous systems may have
unacceptable rates of error, such as nuclear waste handling,
robotic surgery, space, and deep-sea exploration [4], [5], [6],
[7], [8].

Existing work in this domain focuses on bilateral teleop-
eration [9], [10], where haptic feedback is provided to the
operator, allowing them to improve system stability using
force sensing [11], [12]. Such systems need additional hard-
ware and instrumentation, which affects the overall motion
capabilities of the operator and adds to the overall cost of
the system, including additional training requirements.

Though such systems are crucial to applications such
as telerobotic surgery, for applications involving known
environments with known objects, such as a warehouse or
retail store with standard payloads, haptic feedback is not
necessary. In such scenarios, visual feedback from the remote
environment along with shared capabilities may be sufficient
for performing tasks efficiently [13].

Teleoperation with only visual feedback requires the re-
mote robot to possess autonomous capabilities [14], [15],
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such as avoiding collision and identifying the operator’s task-
specific intent, thus minimizing the cognitive loads that may
otherwise arise due to the lack of haptic feedback [16], [17].
Model Predictive Control (MPC) provides an elegant way to
plan collision-free paths by repeatedly solving a constrained
optimal control problem for a finite time horizon to modify
the operator’s inputs. Additionally, predicting the operator’s
intent [18], [19] frees them from performing critical motion
adjustments in domain-specific tasks such as picking and
placing, involving the fine alignment of the end-effector with
the target. This goal-intent prediction, coupled with MPC,
allows for efficient remote manipulation.

A. Related Work

Tele-manipulation [20] has been used in several applica-
tions due to the safety and access it provides to the operator.
A nuclear material handling teleoperation system is described
in [21], along with associated challenges and solution strate-
gies. A dual-arm teleoperation architecture with haptic and
visual feedback specific to surface conditioning tasks is
demonstrated in [22]. Due to the differences in manipulation
needs, it uses two different motion capture systems with
haptic feedback for each arm. The use of augmented reality
(AR) and mixed reality setups are demonstrated in [23], [24]
for an intuitive user interface through the projection of virtual
objects on real environments and a gamepad to provide input
for tele-operating the robot. Most of these works rely on
using inverse kinematic solutions for computing joint ref-
erence angles to control the manipulator. These approaches
lack the ability to alter the input from the operator in case
of a possible collision.

In this respect, MPC has been used for various aspects of
teleoperation, such as manipulation, delay compensation, and
collision avoidance. The teleoperation of a humanoid robot
with two different modes for locomotion is shown in [25].
MPC is used for computing zero moment point velocities for
stable locomotion of the robot while constraining the same
to prevent self-collision, satisfying the kinematic constraints
and stability of the system. In [26], a prediction model was
used on the operator’s side to obtain the future reference for
the remote robot, transmitting the same over a network, and
tracking the commanded reference using MPC. Distributed
MPC was used in [27], with controllers on both the operator
and remote robot ends, aiming to maximize the system trans-
parency while simultaneously maintaining the controller’s
and communication channel’s passivity. Due to the ability of
MPC to efficiently solve an optimal control problem while
considering several constraints, it has been extensively used



Fig. 1: System architecture

in trajectory optimization and tracking applications [22],
[28].

Semi-autonomous teleoperation of manipulator without
explicitly computing inverse kinematics was demonstrated
in [29], using MPC with constraints to prevent collisions. We
extend this work and propose a motion prediction algorithm
to forecast human motion and handle variable time delays
over a network. Additionally, we impose constraints to
enforce a desirable robot configuration.

B. Contributions

This work contributes toward the development of a tele-
operation system architecture with shared control between
the operator and the remotely located robot with only visual
feedback to the operator. Novelty in the proposed architecture
can be summarised as follows:

1) A model-mediated approach for network delay com-
pensation is developed, employing a simplified kine-
matic model to predict operator arm motion.

2) A goal prediction algorithm is proposed for predicting
the operator’s intent while approaching an object in a
remote environment.

3) Seamless integration of the above methods with MPC
to provide collision avoidance and shared manipulation
capabilities.

The proposed architecture is evaluated by performing tele-
manipulation using UR5 manipulator and VR setup over
a standard internet connection, and a pilot user study is
performed to evaluate the efficacy of the proposed method
in terms of task completion times.

A detailed description of the proposed system architecture
is given in Sec. II, followed by evaluation in Sec. III.
The pilot comparison study of the proposed controller is
described in Sec. III-E, followed by a conclusion in Sec.
IV.

II. SYSTEM ARCHITECTURE

The proposed architecture consists of a motion capture
system and an Extended Kalman filter (EKF) to estimate
model states on the operator’s side. The robot’s side consists
of a motion prediction model along with delay compensa-
tion, goal identification, and MPC. Only stereoscopic visual
feedback in terms of video captured using a fixed camera
mounted in the remote environment is presented to the

Fig. 2: The kinematic structure used for motion prediction

operator. The complete architecture of the system is shown
in Fig. 1.

A. Motion Capture

A motion capture setup is used to extract position and
orientation corresponding to the operator’s arm movements,
using extrinsic sensing such as RGB cameras, depth cameras,
or virtual reality (VR) setup.

In this study, we use a VR setup (HTC Vive) to capture
the operator’s arm position and orientation with respect to the
head-mounted display, and a binary toggle switch is used to
trigger the gripping action.

B. Relative Kinematic Model

In order to mitigate the communication channel delay in
the forward path, we employ a model-mediated strategy [30],
where a state estimation mechanism on the operator’s side
is used to determine states of the kinematic model for
predicting the operator’s motion on the robot side. In this
approach, we transmit only the state information along with
the time stamp over the network to a remotely located robot,
where it is used to reproduce the operator’s trajectory using
the robot’s time reference to compensate for any delay in the
network.

For this purpose we use a relative kinematic model as
shown in Fig. 2, with frames {S,E,W} corresponding to
shoulder, elbow and wrist respectively, and defined by Eq.
(1) and (2), corresponding to the relative motion of the elbow
with respect to the shoulder, and wrist with respect to elbow.xe
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where, (·)s, (·)e and (·)w correspond to quantities related
to the shoulder, elbow and wrist joint frames {S,E,W}
respectively, θ(·) and φ(·) corresponds the the azimuth and
elevation angles respectively, r(·) represents the link lengths.

The rate of change of θ(·) and φ(·) for individual pair of
joints is determined by the kinematic equations defined by



Fig. 3: Schematic of time delay

Eq. (3) and Eq. (4) respectively.

Vθ =r(.)θ̇(.) cos(φ(.))

=VB cos(η)sin(µ −θ(.))−VA cos(α)sin(β −θ(.))
(3)

Vφ =r(.)φ̇(.)
=VB{−cos(η)sin(φ(.))cos(µ −θ(.))+ sin(η)cos(φ(.))}
−VA{−cos(α)sin(φ(.))cos(β −θ(.))+ sin(α)cos(φ(.))}

(4)

where, VA and VB are the magnitudes of velocities of con-
secutive joints (that is for shoulder-elbow pair: VA is the
velocity of shoulder and VB represents elbow velocity, and
likewise for elbow-wrist pair), with (β ,α) and (µ,η) being
their respective azimuth and elevation angles.

C. State Estimation and Transmission

State estimates of the operator’s position and velocity
obtained from motion capture are used as measurements in
an extended Kalman filter (EKF) with system model defined
by Eq. (3) and Eq. (4), to obtain filtered estimates of model
states XT (t) = [θs,φs, θ̇s, φ̇s,θe,φe, θ̇e, φ̇e]

T , which are further
transmitted to the robot.

On the remotely located robot side, the model states
XT (t − τ) are received after a delay of τ sec and are used
to smoothly update the remote model states XR(t − τ) as
XR(t − τ) := XR(t − τ) + λ (XT (t − τ)−XR(t − τ)), where
λ < 1 prevents jerky motions which may otherwise arise if
a hard update is used.

D. Model Propagation and Delay Compensation

Prediction of the operator’s trajectory is generated by
propagating the kinematic equations (3) and (4) with the
newly updated states XR and converting the obtained angular
trajectories to wrist positions using Eq. (2) and (1). Since the
reception of model parameters is inevitably affected by the
latency of τ sec in the network, it is required to compensate
the state for the network delay. We achive this compensation
by propagating the delayed states from the delayed time to
the robot’s current time t.

X̂R(t) =
∫ t

t−τ

f (XR(t − τ))dt (5)

where, f (.) denotes the state transition function for prop-
agating the obtained states XR(t − τ). This state provides
the estimate of the position where an operator would most
likely reach at the current time. This process is depicted
in Fig. 3. This delay compensated state is further supplied
to the goal prediction algorithm to determine the operator’s
intended target.

E. Goal Prediction

A goal is considered the position the operator is trying to
reach, and it can be the position of the object that the operator
may try to pick or the position of a placement point. We
also include the terminal position in the operator’s predicted
trajectory as one of the goal corresponding to teleoperation
mode.

A scoring function is designed utilizing operator’s distance
and the instantaneous velocity with respect to the individual
goals as follows:

G := {g1, g2, . . . , gN} (6)

si :=

 k

(1− o ˆ̇x.gi +δ )2

1

(1+ e−γ(||o ˆ̇x||2−β ))

e−w||x̂−gi||2

(7)

where, gi is ith goal in goal set G consisting of N
goals, [ox̂, ˆ̇x] represents the estimate of operators position
and velocity computed using the estimated operator’s states
X̂R(t) in the kinematic model given in eq. 2 , k, w, γ and
β are tuning parameters, δ << 1 is a scalar constant used
to prevent the denominator from going to zero, and si is
the score for goal gi. (.) is used to denote unit vectors of
the respective vectors. The first term in the scoring function
corresponds to the velocity contribution to the score, while
the term e−||ox−gi||2 corresponds to the distance contribution.
The velocity contribution is designed such that a higher score
is allocated to the goal towards which the velocity vector is
directed. The contribution of this score to total component
is also adjusted based on the magnitude of the velocity, with
it’s value going to unity as velocity magnitude goes to zero,
allowing only distance score to contribute to the final score.

Let S represent a set of scores for all the goals gi in the
current iteration.

S :=
[
s1 s2 . . . sN

]T

Due to the operator’s motion and noise in measurements,
the scores associated with the individual goal may vary
in every iteration, which may lead to fluctuating goals if
chosen purely based on maximum score. In order to prevent
this, a confidence metric is computed for individual goals
recursively as an expectation of goal occurrences.

For computing a goal’s confidence, we select the goal with
the highest score as the candidate, and a one-hot encoded
vector with ones corresponding to the identified goal’s index
is used for updating the confidence using the following
recursion:

H :=
[
h1 h2 . . . hN

]
hi =

{
1 if i = j
0 otherwise

Confidence,

C0 =
[
0 0 . . . 0

]
Ct = Ct−1 +α (H−Ct−1)



where, (.)t corresponds to tth iteration. When the confidence
for any goal exceeds 80%, it is passed on to the control
algorithm for an autonomous approach to its position.

There exists a special case when the operator’s velocity is
below a certain threshold κ , which causes the terminal state
of predicted trajectory (operators goal) to lie very close to
the current operator’s position leading to high score. In such
a situation, the operators goal score so is excluded from the
score set S

if ||oẋ||2 ≥ κ then
j = argmax{S}

else
j = argmax{S\ so}

end if

F. Model Predictive Control

An optimal control problem is formulated in order to de-
termine the robot’s joint position and velocity trajectory that
minimizes the error in the Cartesian position and orientation
of the end-effector with respect to that of the operator’s palm
position and orientation. Additionally, constraints are added
to avoid the collision of the robot arm with the table and to
avoid entering singular configurations.

1) Model Used: The joint angle dynamics are modelled
using a double integrator system representing damped system
dynamics. This choice is made due to the presence of an
inner loop controller in the robot for tracking the reference
joint angles provided. The states for the system are taken as
joint angles and angular rates [θ , θ̇ ]T ∈ R12×1 and angular
accelerations are taken as the control input u = θ̈ .

[
θ̇

θ̈

]
=

[
0 I
0 0

][
θ

θ̇

]
+

[
0
I

]
u (8)

2) Cost Function: A quadratic cost function with the aim
to minimize the error in position and orientation of the end-
effector with respect to that of the wrist of the operator is
used. Additionally, a cost corresponding to joint angular rate
is included to minimize the speed of the robot motion, thus
reducing possible damage to the robot. In order to penalise
large control actions, a quadratic cost on control inputs is
also added.

J(θ ,u) =
N

∑
j=0

eT
j Qaek + θ̇

T
j Qbθ̇ j +uT

j Ru j (9)

where, e = [x j − x̂(θ) j,q j − q̂(θ) j]
T ∈R7×1 represents error

in position and orientation, with x representing the position
and q representing quaternion orientation of the operator
palm during pure teleoperation and goal when confidence
in goal exceeds the threshold. ˆ(.)(θ) represents the corre-
sponding quantity obtained using the forward kinematics of
the robot. Qa ∈ R7×7, Qb ∈ R6×6 and R ∈ R6×6 are the
weighing matrices for the errors, joint rates and control
inputs respectively, with Qa and Qb being symmetric positive
semidefinite and R being symmetric positive definite.

Fig. 4: Experiment setup and robot configuration

3) Singularity Constraint: At singularities, the Jacobian
relating the Cartesian velocities and angular velocity of the
end-effector to the joint angular velocities becomes singular,
which can lead to significant joint rates causing unexpectedly
fast motion of the robot. In order to prevent MPC from pro-
viding solutions that correspond to singular configurations,
a constraint of the form

det(J(θ)JT (θ))1/2 > ε (10)

is used, where, J(θ) is the Jacobian matrix and ε < 1 is an
empirically chosen positive constant.

4) Collision Avoidance Constraint: In order to prevent
collisions with large planar objects such as a table, an affine
constraint of the form

An+b ≥ 0 (11)

is used. Where n is the unit normal to the plane with
which collision is to be avoided, A is the matrix with rows
as points of interest x̂i(θ) on the body of the robot that
should avoid collision with the plane. Similarly, to avoid
collision with smaller objects, an ellipsoidal constraint is
used to restrict the motion of the point of interest x̂i(θ)
from entering the enclosed ellipsoid around objects in the
workspace. This constraint can also be used to prevent self-
collision by appropriately choosing reference points on the
robot’s body.

(x̂i(θ)−xre f )
T RMRT (x̂i(θ)−xre f )> α (12)

where M is a diagonal matrix and R is the rotation matrix
defining the orientation of the ellipsoid, onstraxre f is the
reference position around which the ellipsoidal constraint is
fitted, α is chosen empirically to enclose the object in the
ellipsoid

5) Joint Constraint for Desired Robot Configuration: For
a given end-effector position and orientation, there exist mul-
tiple joint angle configurations, and the solutions obtained on
solving the optimal control problem, which depend on the
initial condition provided to the solver and may correspond
to undesirable robot postures. In order to make the robot
take up a desirable posture, the joint angles of the robot are
constrained to stay within specified limits using the bound
constraints as,

θi
min ≤ θi ≤ θi

max (13)

where θi is the desired value for ith joint.



G. Baseline: Inverse Kinematic Controller

As a baseline controller for comparing the performance, an
inverse kinematic (IK) solver is used for computing reference
joint angles for the manipulator. Depending on the position
and orientation, IK provides multiple solutions. In order to
maintain continuity, it is required to select a solution that is
closest to the current joint configuration. It is also required
for the robot to attain a suitable posture/configuration based
on the task at hand, such as manipulation on the table.
In order to achieve these goals, we use weighted least
squares to select reference joint positions from the set of
solutions obtained from the IK solver for desired position
and orientation of the end-effector.

θ = argmin
θ

N

∑
i

||θ −θl ||2Wl
+ ||θ −θd ||2Wd

(14)

where, || · ||Wi represents weighted norm of difference in
the IK solution θ and the last solution θl and desired joint
configuration θd respectively with weight matrix Wi and Wd .

For autonomously traversing to the goal, a minimum jerk
trajectory is planned from the end-effector to the goal at
every iteration, and only the first element of the trajectory is
used in IK during execution.

III. EVALUATION

For validating the proposed architecture, an evaluation of
a block manipulation task was performed over an internet
network.The task comprised picking and placing three square
blocks in a pre-specified order at designated places. Universal
Robot UR5e equipped with a Robotiq 2F-85 two-finger
gripper was used to perform the task as shown in Fig. 4.

For motion capture, HTC Vive VR system was used.
The operator’s right arm’s elbow and wrist positions were
extracted using the elbow-mounted and handheld trackers.

Parameters used in the evaluation are as follows: soft-
update constant α was set to 0.5, and the parameters β and
γ were taken to be 0.2 and 30, respectively, k and w were set
to 1 in the goal scoring function, δ for the operator terminal
goal was set to 10−2, while for other goals it was set to zero.
Qa = diag([5,5,5,1,1,1,1]), Qb = (0.001)I6, R = (0.001)I6
in MPC, while ε was taken to be 10−3. The joint limits
were set to θmin = [−1.2,−1.6,−3.14,−1.2,1.2,−3.14] and
θmax = [−1.4,−1.8,3.14,−1.4,1.4,3.14]. All the constraints
were treated as soft constraints to prevent solvers from failing
due to infeasible solutions. MPC was implemented using
the ACADO toolkit [31] with a time horizon of 2 sec and
discritization step size of 0.1 sec.

A. Network Setup

The network architecture used the Robot Operating Sys-
tem (ROS) in a Master-Slave configuration deployed over
an Amazon Web Services (AWS) cloud platform. To allow
remote connection between ROS master and ROS slave
securely, Virtual Private Network (VPN) setup is used by
running an OpenVPN server on a Virtual Private Cloud
(VPC). This architecture provides complete control over the
network and eliminates the usage of public IP.

Fig. 5: Operator and robot trajectories for MPC with delay com-
pensation

The operator is provided with real-time stereoscopic video
captured on the robot side that is shared using a WebRTC-
based video streaming solution. A GStreamer-based video
streaming framework that takes a live camera input as the
video source, which is further encoded into a WebRTC
compatible format, allowing remote peers to receive the
video in real-time.

B. Delay Compensation

Fig. 5 shows the trajectory plots of commanded input
and the trajectory followed by the robot using MPC. It
can be seen that MPC is able to follow the commanded
trajectories. The histogram plot in Fig. 6a shows the delay
in the collected samples. It can be seen that a delays of
magnitude of 400ms were experienced most frequently in
the communication channel. Similarly, the histogram plot in
Fig. 6b shows the norm of the error in the operator’s wrist
position across the network in the presence of delay (labelled
as original), against the error in the predicted operator’s
position on the robot’s side. It can be seen from the plot that
the error corresponding to the estimated operator’s position
are less frequent at higher magnitudes, and this can also be
seen in Fig. 6c, showing a zoomed-in view of the trajectory.

C. Constraint Satisfaction

For testing the collision avoidance constraint, we restricted
the end-effector to stay above the table surface while simul-
taneously avoiding the obstacle located at [0.4,0,0.1]T . The
plot in Fig. 7 shows the trajectory corresponding to the back-
and-forth motion of the operator along the y-axis across the
obstacle. It can be seen from the z-axis trajectories that the
end-effector successfully manoeuvres over the obstacle while
safely avoiding it and also maintains a constant offset of
approximately 0.05m above the table.

D. Effect of Shared Control

To analyse the efficacy of the proposed shared control
approach, same experiment was performed using pure tele-
operation mode. The corresponding operator commanded
trajectory was further evaluated with the shared control
approach in moving towards the goal. Fig. 8 shows the
variation of the distance of the end-effector in both cases



(a) Experienced network delay (b) Error norm in delayed & estimated trajectory (c) Zoomed delayed & estimated trajectory

Fig. 6: Delay compensation using trajectory re-sampling

Fig. 7: Trajectory while satisfying the collision constraints

during the picking operation. It can be seen from the plot
that the end-effector moves to the intended goal much earlier
in the shared control case compared to the pure teleoperation
mode, in which the operator has to move with fine motions
to reach the goal. On an average it was observed that the
pure teleoperation case required approximately 115 sec to
complete the experiment while shared control took 74 sec.

For the shared control, the first approach to the goal occurs
due to the operator’s motion toward the goal, which can
be observed from a steadily decreasing distance. When the
operator’s approach velocity towards the goal decreases, the
confidence in the operator’s terminal goal increases and the
control switches back to the operator. But as the distance
between the operator and the goal decreases, the confidence
in the goal increases, and control switches back to the
autonomous mode, taking the robot to the goal position.
The difference in the trajectories of the two modes during
operator tracking is because the shared control tracks the
terminal state of the predicted trajectory, while pure teleop-
eration follows the current position of the operator.

E. Comparison User Study

The previous evaluation involved a trained operator using
the complete proposed architecture. In order to validate the
benefits of the proposed method over baselines, a pilot user
study was conducted involving 10 novice operators. Each

Fig. 8: Variation of the distance between the goal and end-effector
with and without goal prediction

operator was asked to perform the block placement task
(Fig. 4). The study had a 2×2 design, with the teleoperation
system running one of the controllers (IK or MPC), along
with model propagation for delay compensation being active
or inactive (MP or NMP). Each operator’s performance was
evaluated using the time taken to complete the task.

TABLE I: Summary of Trial Times in Box Placement (s)

Condition Mean Std. Dev.
IK, NMP 70.81 12.26
IK, MP 70.53 12.80
MPC, NMP 78.92 21.67
MPC, MP 72.25 14.62

As shown in Table I, model propagation was slightly
faster on average with both control methods. Though MPC
was slower than IK, it incorporated collision avoidance
constraints leading to safer operation. A two-way ANOVA
with the Bonferroni correction was used to compare the
factors of the control method (IK, MPC) and the presence of
model propagation (NMP, MP). These factors were not found
to be statistically significant in their effect on the reduction
of trial times in the pilot study, with p = 0.48 for MPC vs IK
and p = 0.33 for NMP vs MP. However, the trends indicate
that a more extensive user study in the future may show
greater effects of these factors on operator performance.

IV. CONCLUSION

In this work, we demonstrated a teleoperation architecture
involving a model-mediated approach for delay compensa-
tion using operator motion prediction with a relative kine-
matic model and shared control through goal identification.
It was verified through an evaluation procedure that the
proposed motion prediction approach and shared control
helped shorten the required task completion time.



An MPC formulation used was able to compute optimal
joint angle references while satisfying the imposed con-
straints leading to collision-free motion. A pilot comparison
indicated slightly better performance characteristics com-
pared to a conventional IK solver-based approach, along with
added benefits of collision avoidance.

For future work, we plan to improve the goal prediction
algorithm using an adaptive technique for tuning the scor-
ing function parameters and further validate the complete
architecture with a larger user study. In addition, we plan to
incorporate a predictive display feature to provide delay-free
visual feedback to the operator.
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