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Abstract— This work proposes a useful modification to an
existing model-free predictor for handling network delays
in teleoperation. This modification consists of an adaptively
varying parameter that depends on delay at the current
instant and the latest prediction error terms, which was not
in use in the existing method. The conception of the proposed
modification was obtained through theoretical analysis and later
implemented for a mobile robotic platform. It was observed that
the modified predictor adapted well to the varying delay and
improved the system transparency by a maximum of 86% and
by 15% in average. Additionally, this work also proposes a
method to compensate for missing data using the same model-
free predictor, showing a maximum transparency improvement
by 12%.

I. INTRODUCTION

In the recent past, unilateral teleoperation has been em-
ployed in special applications such as space exploration,
underwater navigation, hazardous material handling, etc.
However, most of them are not completely real-time and
consist of a command-execute-feedback type of operation.
With the advent of computational convenience and advances
in virtual/augmented reality; wider network bandwidth and
availability; bilateral teleoperation, involving real-time con-
trol has become a budding area in the present time. However,
problem areas with respect to remote environment model,
human operator model [1], network delay and packet loss
are explored and researched extensively till date. Out of
these challenges, the current work attempts to address the
challenge faced in bilateral teleoperation due to network
delay and missing data. Many studies and works on bilateral
teleoperation consider stability as the topmost property to
be conserved as delay in the network lead to oscillations
and instabilities in a bilateral system [2]. This led to the
implementation of many conservative approaches based on
passivity and wave variable transformation in the beginning.
These are very old techniques but can be seen to be improved
and utilised even in the recent works [3], [4] [5]. Though
these techniques have seen to preserve stability of the system,
they have also been conservative in the sense of limiting
the performance of the system. This drove the research
community to move towards predictive approaches that can
inherently preserve system stability and improve perfor-
mance, provided the individual local and remote systems
are stable. This introduced the concept of transparency in
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bilateral teleoperation defined as the ability of the system
to perceive the remote environment with minimal lag/delay.
Hence, these methods aimed at improving the transparency
of the system. It is also imperative to mention the definition
of synchronisation in the teleoperation domain, which is the
ability of the robot to track the undelayed master command.
Transparency was essentially considered more influential
than synchronisation since the human operator was the sole
decision maker and decrease in transparency could tamper
with the system stability.

A. Predictive Approaches

In teleoperation, without delay compensation, the human
operator will perceive the past states of the robot operated in
the remote environment. This may cause stability issues in
the whole system. However, if the operator is able to perceive
the undelayed states of the robot in the current time, 100%
transparency is achieved and thus the operator’s next course
of actions will not cause instability issues due to delay. In
the real world, 100% transparency is difficult to achieve.
Hence, if the delayed states from the remote side is used
to predict or estimate the current states using the model of
the robot or through some other means, it would improve the
transparency. By this, the operator is made to perceive the
estimated states instead of the actual delayed states. This is
also called as predictive display, which projects the states
at current time using the received delayed states through
the communication channel, thereby attempting to improve
the transparency and decision making of the operator. This
concept is illustrated in Fig. 1.

A survey on predictive control approaches was given by
Uddin et al. [6] with larger emphasis to three predictive
control approaches for teleoperation namely Smith Pre-
dictor (SP), Model-based Predictor(MBP) and Generalised
Predictive Control (GPC), also known as model-mediated
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control. Similarly, Shen et al. [7] proposed a novel cascaded
observer for motion prediction of robot in the presence
of system uncertainties. However, the authors assume prior
model information of master and slave models.Though these
techniques are effective, they required accurate model of the
slave system, master system including the human operator
dynamics and environment model, which can be difficult
to capture in the real-world. Kebria et al. [8] used a
filtering mechanism for prediction which consisted of 3
tuning parameters. Zheng et al. [9] proposed a model-free
prediction approach for teleoperation of a ground vehicle.
The advantage of using this approach was the presence of
only one tuning parameter without the need for master or
slave model. With a tiny refinement, this model-free predictor
was extensively analysed and was employed in teleoperated
ground vehicles in recent works [10], [11]. The current work
aims to address some of the prevailing drawbacks of this
model-free predictor and improve the prediction for better
transparency.

II. PROBLEM STATEMENT AND CONTRIBUTIONS

The model-free predictor in the recent work [11] has its
own advantages over model-mediated techniques for delay
compensation. However, prior analysis of network delays and
state errors due to the network, is required to select the value
of the tuning parameter in the prediction equation. Hence,
this study focuses on closing this gap by adapting to the
instantaneous delay and prediction error terms, to facilitate
real-time online prediction. The contributions of this work
in the teleoperation domain are multi-fold,

• The study analyses a recent model-free predictor de-
veloped for teleoperation of vehicles and attempts to
improve it, in terms of accuracy, online implementation
and larger delay handling, by making the tuning param-
eter adaptive. This was achieved by using theoretical
support and was implemented for a real network.

• In addition to delay handling, the study attempts to solve
the issue of missing data due to various network issues
in the communication channel.

• It attempts to show the significance of transparency in
teleoperation and also provides a quantitative analysis
for the same.

Section III presents the existing model-free predictor de-
sign, need for its improvement and proposes a modified
predictor with potential reduction in prediction error. It also
presents a way to handle missing data issue in teleoperation.
Section IV discusses the details of the case study for which
the proposed modification is implemented along with the
means of quantifying transparency. Later, Section V quanti-
fies and discusses the results of delay compensation and solu-
tion for missing data for various scenarios in terms of system
transparency. Conclusion and future work is presented in
section VI.

III. PREDICTOR DESIGN AND IMPROVEMENT

A model-free predictor, inspired from sliding mode con-
trol methodology, was developed by Tandon et al. [12]

for hardware-in-loop testing of automobile engine, which
later evolved and was expanded to teleoperation of ground
vehicles in [9]. The predictor was given by,

ẏp(t) = ẏr(t− d(t))− µ(yp(t− d(t))− yr(t− d(t)), (1)

where, yr and ẏr are the delayed signals received from the
remote location; yp(t − d(t)) is the local state value in a
previous instant corresponding to the observed delay, and ẏp
is the prediction made for the current time with µ as the only
tuning parameter.

Though extensive frequency domain analysis and tuning
guidelines were presented in connection with tuning µ, there
was a considerable scope for improvement in the predictor
performance for real-time implementation. This could be
achieved if µ could adapt to the current time delay and the
latest prediction error terms. This following sections shows
the need for adapting µ and later proposes an adaptive law
for the same.

A. Need for Adaptive µ

The original predictor [12] in (1) assumes its operating
point on the sliding surface, implying that the sliding surface
value is zero for the given µ value. However, with the
inclusion of delay, the derivative of the prediction error
becomes,

ė(t) = ẏp(t)− ẏr(t). (2)

Substituting (1) in (2),

ė(t) = −µe(t− d(t)) + ẏr(t− d(t))− ẏr(t). (3)

Taking the error due to delay as,

enw(t) = −yr(t) + yr(t− d(t)), (4)

(3) becomes,

ė(t) + µe(t− d(t)) = ėnw(t). (5)

Taking Laplace transform on both sides,

e(s)

enw(s)
=

s

s+ µe−ds
, (6)

where the error due to network delay (or the coupling
error [10]) is the input to the system and the prediction
error is the output of the system. The finite time convergence
was proved [12] for constant delay and stability range was
established [13] for varying delay.

In reality, the system will not be on the sliding surface due
to a lot of factors. Hence, if a small value, ε is considered
for the sliding surface, (5) would become,

ė(t) + µe(t− d(t))− ε(t− d(t)) = ėnw(t). (7)

Some prediction results with choice of different µ values
in the stable range are shown in Figure 2. This shows
the difference in predictions between the proposed method,
µmax for the maximum delay in the network and 50%
of µmax. With prior knowledge of the maximum delay
in the network, the case of µmax performed at par with
adaptive case. Assuming no knowledge of the maximum
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Fig. 2. Comparison of constant and adaptive µ performance

network delay (online prediction), a conservative value of
0.5µmax was chosen, which performed fairly well with
scope for improvement. With the proposed technique, which
was able to adapt to instantaneous delay and prediction
error terms, there was a 17% reduction in prediction error
compared to the above approach. This shows the adaptive
techniques capability to be implemented for online prediction
without any prior information or analysis of the network
delay or the coupling error. Also, under/over assumption of
maximum delay in the network would impact the predictor’s
performance badly if constant µ value had to be used for
varying delay cases.

Hence, there is a definite need for the tunable parameter µ
to adapt with respect to ε, besides, with the changing delay
d(t), for online implementation. The above equation (7) can
thus be written as,

ė(t) + (µ+ ∆µ(ε, t))e(t− d(t) = ėnw(t), (8)

where ∆µ would attempt to compensate for the residue ε of
the sliding surface in the past, corresponding to the delay.

Apart from the scope available for improvement in the
predictor design, there were some special requirements per-
taining to telerobotics area taken up in the current work, as
compared to teleoperation of road vehicles carried out by
Zheng et al. [9]. These requirements are listed,

(1) The accuracy expected in the current application is
of centimeter level whereas the cited study showed
accuracy improvement in the order of square meters and
degrees.

(2) This application calls for online prediction of the de-
layed states, which does not have prior knowledge of
maximum delay in the network and the error between
the local and remote signals of the same state due to
network delay. These information were used for tuning
µ [11] in the previous work for offline prediction.

(3) A maximum delay of 600 ms was considered in the
previous work, for testing, however this study aims to

develop an improved predictor which can handle delays
of up to 1 s.

In one respect, these mentioned requirements could also be
viewed as the gaps present in the existing technique. The aim
of the current work was to attempt to address these gaps.

B. Proposed Modification

Keeping in mind the role of instantaneous time delay on
µ from (6), and the effect of sliding surface’s past residue ε
on ∆µ, the following adaptive law is proposed,

µadapt = µc(d) + µf (ε(t− d), µmax(d)), (9)

where µc(d) is the course tuned component of the parameter
with respect to the instantaneous delay, d(t), and µf is
the fine tuned component that is a function of ε and the
maximum value of µ from Lambert W function [14]. Both
these components are given by,

µc =
2

3
µmax(d), (10a)

µ̇f = −ε(t− d)µmax(d)

K
, (10b)

where µmax(d) is the maximum value of µ corresponding
to the current time delay for which the system is stable,
obtained from Lambert W function [14] and from (6). K is a
tuning variable that also determines the step change in µf for
a particular sample time. Here, µmax(d) is also considered
in the equation to make the step change proportional to
the current delay’s maximum allowable µ value for stable
operation. Also, from (7) and (8), it is seen that increase in
ε will reduce the µf value to compensate for the prediction
error and hence the negative sign in (10b).

The minimum and maximum values of µ are restricted
to 1

3µmax(d) and µmax(d) respectively to enable stable
operation in this study. Hence, µf is given a variation limit
of 1

3µmax(d) or approximately 33.3% of µmax(d) on either
side to adjust for the past ε value in the delay span. These
specific limits were chosen with the insights provided by the
studies [9], [10] and their tuning guidelines [11], [13].

C. Missing Data Issue

During network controlled operations, it is common to
have missing data issues due to packet loss or depending
on network protocols used. While the previous work [11]
proposed to compensate for delay with the predictor, it did
not attempt to compensate for missing data in a particular
instant. With this in mind, the above predictor is modified
slightly to compensate for missing data and is given by,

ẏp(t) = ẏr(t−d−m)−µ(yp(t−d)−yr(t−d−m)), (11)

where m represents the instances of data loss from the
current time, which makes ẏr(t− d−m) and yr(t− d−m)
as the only set of usable states for prediction with respect
to yp(t − d) with delay, d(t − m) representing the delay
corresponding to the latest available states. This simple law
would be tested for its efficacy in section V.
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IV. PREDICTOR IMPLEMENTATION ON MOBILE ROBOT

A. Master Slave System

Though the developed predictor could be used for any tele-
system covered under its bandwidth [11], it is implemented
in a mobile robot moving in a constrained space. The system
used for testing the efficacy of the predictor is a mobile
platform shown in Figure 3 that is developed for a humanoid
robot, operated by a human from a remote location. The
human operator relays two commands to move the platform,
namely the longitudinal speed and the yaw angle of the plat-
form. Since, it moves in an indoor/constrained environment
with many stationary objects and moving humans in the
vicinity, the maximum velocity is limited to 1 m/s, however
for testing purpose, it is 1.5 m/s. A humanoid robot will later
be integrated with the mobile platform and the predictor will
be used for estimating the undelayed positions of various
joints and elements of the robot. This kind of application
demands accuracy in the order of a few centimeters in the
predictor for efficient real-time control.

B. Transparency Metric

Transparency is defined as the ability of a human operator
to perceive (see, feel and smell) the remote environment
with a virtual absence of delay and missing data in the
communication network. Transparency is a very important
parameter not only with respect to system stability but
also with respect to operator friendliness in a real-time
teleoperation. This property can be quantified as,

Tr =
1

n

n∑
i=1

(
1− |mdi −mai|

|mai|

)
100, (12)

where mdi is the delayed/ predicted value and mai is the
undelayed value at the ith instant, and n is the total number
of data points. The transparency Tr will be 100% when the
error between actual and the delayed signals are zero, which
is never true in a network control system due to the coupling
error. However, this metric would be used to analyse the
transparency with and without the proposed predictor.

V. RESULTS

For validating the proposed scheme, simulations were
run initially, with the robotic system in Gazebo along with
artificial delay injection. This data was utilised to choose
an appropriate value of K in (5). Depending on the sample
time used for simulation and with systematic trial and error
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approach, K was chosen to be 1 for the sample time of 20
ms. It is important to note that, this prior simulation exercise
is the only requirement to tune K. Once a suitable value is
chosen, there is no need for real network data analysis in the
later stage. The algorithm with its adaptive law, is ready for
implementation in the physical network.

A. Implementation on the Physical Network

The experiments on the physical network was carried out
using Amazon Web Services (AWS) to establish a connection
link between the master in Ayodhya, Uttar Pradesh, India and
the slave in Bangalore, Karnataka, India with a physical dis-
tance of about 1900 km. Before implementation, the systems
on both the locations were time synchronized for forward and
return delay calculations. There were six scenarios/trials with
different maneuvers implemented, for which the return delay
pattern is shown in Fig. 4. The slave system was a mobile
platform in the Gazebo environment and the human operator
in the master location controlled the slave system by giving
velocity and yaw commands through keyboard interface. The
video streaming of slave environment was carried out in
the master location. The control architecture was built using
Robotic Operating System (ROS) platform. A snapshot taken
from the master’s system is shown in Figure 5.

B. Prediction with time delay

The proposed predictor in (1) was tested for its efficacy for
6 scenarios and a comparison of the results with and without
the use of predictor is presented in table I. These two cases
were compared in terms of transparency given in (12).

From table I, it is seen that the mean transparency im-
provement with the usage of the proposed predictor com-
putes to 15% and the maximum improvement is shown at
86%, thereby, ascertaining the predictor’s efficacy. A visual



TABLE I
TRANSPARENCY IMPROVEMENT WITH PREDICTION FOR TIME DELAY

Trail No. Transparency (x,y), % Tr improvement
With prediction Without prediction (x,y), %

1 (94,99) (79,91) (19,9)
2 (94,99) (83,98) (13,1)
3 (95,98) (51,95) (86,3)
4 (99,95) (89,89) (11,7)
5 (86,95) (82,86) (5,9)
6 (97,98) (82,91) (23,7)

representation of its performance is shown in Figure 6 for
one of the scenarios for both x and y position of the mobile
platform. This trial consisted of delays as high as 1 s. This
figure visually shows the accuracy of its prediction with
respect to the black line, which is the actual undelayed
signal. Hence, the proposed method performs well for the
specified application. A magnified plot for another trial is
shown in Fig. 7 to present the comparison between the
distorted delayed signal and the predicted signal that is
close to the actual undelayed state. This visually shows
the transparency improvement with the use of the modified
model-free predictor.

C. Prediction with time delay and missing data

The proposed predictor in (11) was tested for its efficacy
for two scenarios with different data transmission proba-
bilities. For example, a 80% data probability would mean
20% loss in data or 20% of missing data. A comparison of
the results with and without the use of data compensation
is presented in table II. In testing, when there was a data
loss in a particular instant, the previous state values were
considered for that instant to make the delayed signal. When
data compensation was not in use, the prediction, ẏp in the
previous instant was considered for extrapolation during a
missing data case.

The two cases are compared in terms of transparency
given in (12). Further, Figures 8 and 9 show the performance
comparison of the data loss compensation against its absence.
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Due to missing data, the performance of the prediction
without compensation was oscillatory, however this issue was
mitigated with compensation. This is clearly visible in the
zoomed plot in Fig. 9. Also, transparency improvement is
higher about 4.6% on an average with compensation, which
shows its efficacy. It is also interesting to note that there is a
decrease in transparency for one of the cases in trial 2 with
the usage of predictor and without data loss compensation.

TABLE II
TRANSPARENCY IMPROVEMENT WITH PREDICTION FOR TIME DELAY,

WITH AND WITHOUT MISSING DATA COMPENSATION

Trial No. Data Tr improvement (x,y), %
Probability With comp. Without comp.

1 0.8 (19.5,8.0) (7.3,7.7)
1 0.6 (17.8,9.1) (17.1,3.0)
1 0.4 (20.0,12.0) (18.2,8.1)
2 0.8 (7.9,10.5) (5.0,9.8)
2 0.6 (10.1,11.2) (4.6,10.2)
2 0.4 (10.1,11.0) (-13.0,10.0)
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VI. CONCLUSION AND FUTURE WORK

A useful model-free predictor proposed in an existing
work for handling network delays, was modified in this
work in order to avoid prior data analysis and enable online
implementation of the predictor. The modification consisted
of an adapting predictor parameter, µ that was tuned from
data analysis in the previous work. Need for this adaptive
technique was explicated and the proposed technique was
implemented for real network data. It was shown to improve
the transparency by 15% on average with a maximum
improvement of 86% in the evaluated cases.

In addition, this work proposed a simple technique at-
tempting to solve the missing data issue, which was absent in
the previous work. This was also tested in the given robotic
application with physical network delay (varying). This led to
an additional transparency improvement of 4.6% on average
with a maximum of 12%.

This work assumed data and video streaming to be syn-
chronised and both the delays to be the same at a particular
instant. However, in real time, there may be little/less syn-
chronisation between the two, which will be considered in
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Fig. 9. Missing data compensation: Zoomed in plot

future work. Further, it is planned to extend this work for a
humanoid robot. Though, this work was implemented in the
real network, the robotic system was simulated in Gazebo
environment, hence, it is only fruitful to deploy it for the
real robotic system in the near future.
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